Muscle hypertrophy is associated with increases in proteasome activity that is independent of MuRF1 and MAFbx expression
نویسندگان
چکیده
The regulation of skeletal muscle mass depends on the balance between protein synthesis and degradation. The role of protein degradation and in particular, the ubiquitin proteasome system, and increased expression of the E3 ubiquitin ligases, MuRF1 and MAFbx/atrogin-1, in the regulation of muscle size in response to growth stimuli is unclear. Thus, the aim of this study was to measure both proteasome activity and protein synthesis in mice over a 14-day period of chronic loading using the functional overload (FO) model. Further, the importance of MuRF1 and MAFbx expression in regulating muscle hypertrophy was examined by measuring muscle growth in response to FO in mice with a null deletion (KO) of either MuRF1 or MAFbx. In wild type (WT) mice, the increase in muscle mass correlated with significant increases (2-fold) in protein synthesis at 7 and 14 days. Interestingly, proteasome activity significantly increased in WT mice after one day, and continued to increase, peaking at 7 days following FO. The increase in proteasome activity was correlated with increases in the expression of the Forkhead transcription factors, FOXO1 and FOXO3a, which increased after both MuRF1 and MAFbx increased and returned to baseline. As in WT mice, hypertrophy in the MuRF1 and MAFbx KO mice was associated with significant increases in proteasome activity after 14 days of FO. The increase in plantaris mass was similar between the WT and MuRF1 KO mice following FO, however, muscle growth was significantly reduced in female MAFbx KO mice. Collectively, these results indicate that muscle hypertrophy is associated with increases in both protein synthesis and degradation. Further, MuRF1 or MAFbx expression is not required to increase proteasome activity following increased loading, however, MAFbx expression may be required for proper growth/remodeling of muscle in response to increase loading.
منابع مشابه
The Effect of Aerobic Training on expression of some indices of myocardial hypertrophy and atrophy in rats
Background: Protein synthesis and degradation are dynamically regulated processes that to control the accretion or loss of muscle mass. However, the mechanisms responsible exercise-induced heart hypertrophy remains elusive. The aim of this study was to investigate the effect of aerobic training on expression of some indices of myocardial hypertrophy and atrophy in male rats. Materials and Meth...
متن کاملThe mERG1a channel modulates skeletal muscle MuRF1, but not MAFbx, expression.
INTRODUCTION We investigated the mechanism by which the MERG1a K+ channel increases ubiquitin proteasome proteolysis (UPP). METHODS Hindlimb suspension and electro-transfer of Merg1a cDNA into mouse gastrocnemius muscles induced atrophy. RESULTS Atrophic gastrocnemius muscles of hindlimb-suspended mice express Merg1a, Murf1, and Mafbx genes. Electrotransfer of Merg1a significantly decreases...
متن کاملInterleukin-1 stimulates catabolism in C2C12 myotubes.
Interleukin-1 (IL-1) is an inflammatory cytokine that has been linked to muscle catabolism, a process regulated by muscle-specific E3 proteins of the ubiquitin-proteasome pathway. To address cellular mechanism, we tested the hypothesis that IL-1 induces myofibrillar protein loss by acting directly on muscle to increase expression of two critical E3 proteins, atrogin1/muscle atrophy F-box (MAFbx...
متن کاملTranscriptional activation of muscle atrophy promotes cardiac muscle remodeling during mammalian hibernation
Background. Mammalian hibernation in thirteen-lined ground squirrels (Ictidomys tridecemlineatus) is characterized by dramatic changes on a physiological and molecular level. During hibernation, mammalian hearts show a propensity to hypertrophy due to the need for increasing contractility to pump colder and more viscous blood. While cardiac hypertrophy is quite often a process characterized by ...
متن کاملMyostatin Activates the Ubiquitin-Proteasome and Autophagy-Lysosome Systems Contributing to Muscle Wasting in Chronic Kidney Disease
Our evidence demonstrated that CKD upregulated the expression of myostatin, TNF-α, and p-IkBa and downregulated the phosphorylation of PI3K, Akt, and FoxO3a, which were also associated with protein degradation and muscle atrophy. The autophagosome formation and protein expression of autophagy-related genes were increased in muscle of CKD rats. The mRNA level and protein expression of MAFbx and ...
متن کامل